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Abstract. Krypton is a novel peer-to-peer DeFi exchange protocol that solves the issue
of miner extractable value in the context of trading. It is fully decentralized, resistant to
front-running and to short-term adverse selection. This is achieved by executing orders as
continuous streams over time at finite trading speeds in contrast to concentrating trade
execution to a distinct instant of time at infinite speed.

The protocol features price discovery. Rather than relating price to quantity, traders
submit demand and supply schedules relating price to trading speed. This change in per-
spective affords enormous conceptual clarity, predictability, and simplicity: The market
clearing equilibrium is simply defined as the intersection of the aggregate demand and
supply curves in price/trading-speed space.

An actor in possession of short-term information that needs to be monetized prior
to becoming public will need to request a high trading speed, which is limited by the
maximum aggregate trading speed offered by the opposite side and increases the price.
The unilateral price and trading speed jump induced by a fast trade signals the presence of
asymmetric information and gives uninformed traders time to respond by adjusting their
quotes. In infinite speed trading systems such as automated market makers (AMMs) and
central limit order books (CLOBs), the maximum tradable quantity is exchanged in the
very same moment the order that signals the presence of superior information arrives,
making it too late for everyone else to react.

Date: December 15, 2021.
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1. Introduction

Front-running and adverse selection of regular traders by faster and more sophisticated
actors with short-term information advantages are pervasive in both crypto markets and
traditional finance. In centralized markets, the profits arising from these activities are
captured by algorithmic high-frequency trading (HFT) firms who compete among each
other, devising ever more intricate techniques to uncover opportunities by predicting short-
term order flow and to reduce latency of market access to win the race to the centralized
exchange against one another. The HFTs’ gains from front-running and adverse selection
represent costs to regular traders such as pension funds, mutual funds, and retail investors.
These costs are the primary reason for the existence of price impact and bid-ask spreads.1

Exploiting short-term market microstructure effects does not contribute to efficient price
discovery since no new information about a security’s fundamentals is uncovered. The cost
thus imposed onto regular traders reduces their incentives to trade and hence prevents them
from implementing optimal investment strategies. Since these trading activities represent
not merely a transfer of wealth from regular traders to sophisticated actors but result in
a deadweight loss due to this inefficiency, the activities are collectively known as toxic
trading.

Competition among HFTs requires significant investment in research, hard- and software
engineering, as well as the construction of networks of radio towers and fiber optic cables
for the sole purpose of reducing latency of market access. The fruits of these research and
development efforts are kept as trade secrets which leads to duplication of work by every
single algorithmic fund in the space. In aggregate, this investment leads to a reduction in
economic welfare.

On centralized exchanges such as NYSE, NASDAQ or CME, high-frequency traders are
responsible for the majority of the trading volume, producing a significant fraction of total
revenue for companies operating these exchanges. Exchange operators have no incentive
to implement measures that limit HFT activity as doing so would lead to a substantial
reduction in their own revenues. Exchange operators and sophisticated algorithmic traders
essentially share the proceeds from toxic trading. This alignment of incentives makes it
less likely for centralized incumbents to compete with novel exchange mechanisms in the
short term.

In decentralized, trustless and permissionless public blockchain ecosystems, miners2 are
the final arbiters of transaction sequencing, giving them the ability to front-run each trade
on every block they win. The privilege to front-run a trade after it has been broadcast to
the blockchain network translates into negative latency, turning miners into the ultimate
front-runners. The profits that miners can thus appropriate are collectively known as miner
extractable value or maximal extractable value (MEV).

1Glosten and Milgrom (1985) explain the existence of a bid-ask spreads on information theoretic grounds.
Easley and O’Hara (1987) demonstrate that large trade sizes are more likely to be motivated by asymmetric
information than small trades and therefore produce higher market impact.

2More generally block producers (miners in PoW and validators in PoS).
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The explosive growth of decentralized finance (DeFi) from virtually zero in early 2020 to
an average daily trading volume of $3M in August 2021 has prompted an equally impressive
rise in realized MEV.3 This rapid growth in MEV has been fueled by Flashbots, a project
that distributes a modified Ethereum client called ‘mev-geth‘ that implements an auction
mechanism through which algorithmic traders can bid for the privilege to determine the
composition of the next block won by a miner running the software.4 The availability of
Flashbots absolves mining operators from developing algorithmic trading sophistication
themselves - a factor that would have counteracted the adoption of these practices.5 As of
April 2021, about 84% of miners active on the Ethereum mainnet are running Flashbots’
modified mev-geth client, up from 58% in March, 12% in February, and just 4% in January.6

The rapid rise in Flashbots adoption will ensure that soon almost every Ethereum block
produced will be squeezed for its maximal extractable value. The virtual elimination of
gas fees on rollups, side chains, and high-performance L1 solutions will make it profitable
to front-run even the smallest orders.

The only way to solve this rapidly rising MEV crisis in a way that is compatible with
the ideals of Ethereum is to design mechanisms that make front-running worthless or
impossible. This is the route we have chosen for Krypton.

In its pursuit of MEV resistance, Krypton switches out the foundational mechanism that
existing trading protocols, both in DeFi and in CeFi are based on for a novel approach
that solves the pertinent problems of front-running, adverse selection based on short-term
information advantages, thus preventing miner extractable value. In Krypton, trades are
executed over periods of time rather than being carried out in bursts concentrated to
singular points in time which translates to an infinite trading speed. Krypton gives regular
traders a way to credibly signal that they are not trying to front-run or exploit short-term
information via a choice of trading speed. Regular traders are in no rush to monetize
short-lived information and can therefore select a low trading speed. This fundamental
change in perspective, which is developed in detail throughout this paper, renders technical
superiority and transitory information advantages worthless. By Krypton’s design, even the
fastest, most sophisticated, and well-informed traders will not be able to extract meaningful
value or cause noticeable damage to regular traders - no matter their effort or expense.

The decentralized spot trading protocol for ERC-20 tokens will be extended to deriva-
tive contracts in a future version of the protocol that adheres to the same basic principles.
Generally speaking, the conceptual approach of addressing the issue of transitory infor-
mation advantages via continuous trading at limited speeds could be used in applications

3Schmidt 2021 estimates MEV to be between $1m and $4m per day.
4Flashbots reports total MEV from January through August 2021 to be $549.1M which translates to a

daily average of $2.26M during that period.
5Proponents of Flashbots argue that the enormous profit potential from MEV would likely have led to an

increase in centralization of mining operations since merging a mining pool not engaging in MEV with one
that does keeps the efforts to uncover opportunities constant while increasing the probability of winning a
block, thus successfully realizing MEV profit.

6These numbers have been obtained from Flashbots’ monthly and bi-monthly Flashbots transparency
reports.
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outside of trading such as insurance, sports betting, or other fields where adverse selection
matters.

This paper is organized as follows. Section 2 details how toxic order flow is able to
exploit regular trades in existing exchange designs. 3 presents the technical approach to
implement Krypton using smart contracts. Section 4 concludes.

2. How Toxic Traders Exploit Existing Exchange Mechanisms

2.1. Adverse Selection in a Central Limit Order Book. In a central limit order
book (CLOB), market makers and large institutional traders place limit orders that sit
unexecuted until they are taken by an active trader.

Suppose that a regular trader wants to sell 10,000 shares for at least $100 per share.
If an informed trader gains a short-term information advantage by learning that the fair
value of the asset has increased to $105, he can swoop in and lift the entire 10,000 shares
for $100 before the seller learns of the information and can react.

This has led to a technological arms race in which ever more sophisticated algorithms
are devised to either conceal trade intentions via splitting large orders for institutions over
time to make them look as random as possible or to reveal them via sophisticated statistical
filters in order to front-run.

2.2. HFTs and Front-Running in a Central Limit Order Book. Robinhood to pre-
dict and exploit short term price movements. Algorithmic high-frequency traders (HFTs)
purchase order flow from retail brokers such as

Suppose that an HFT learns that Alice has submitted a market order to purchase 10,000
shares. The current price is $100. The HFT uses its low latency market access to place
a buy order and purchase 10,000 shares, then immediately places a sell order for 10,000
shares below the best ask, before Alice’s order arrives, selling to Alice at a higher price
than they bought at for an immediate profit. If Alice had instead placed a limit order at
$101, the HFT would reduce the quantity it transacts to make sure their sell order won’t
exceed Alice’s limit price.

2.3. Adverse Selection in Automated Market Makers (AMMs). The AMM creates
liquidity by representing a passive side who is willing to act as the counterparty to any
trade according to a computationally inexpensive formula. This simple formula loses to
arbitrageurs and other toxic traders with short-term information advantages and needs to
be compensated for this systematic loss (euphemistically designated ’impermanent loss’)
via 25 basis points (bps) in fees.

If the the fair price of token X as discovered on two-sided exchanges (such as a CLOB)
rises from $100 to $110, an arbitrageur can buy from the AMM until its price has been
driven up to $110. This arbitrage mechanism is integral to the AMM as it would otherwise
not know the fair price of a token, which would make it an unattractive trading venue.
Regular traders are ultimately paying for liquidity provider (LP) losses to informed traders
via high trading fees. This is the central inefficiency in peer-to-pool DeFi protocols.
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2.4. Front-Running by Miners in Automated Market Makers. Decentralized blockchain
ecosystems give miners or validators the privilege to choose the ordering of transactions
when they produce a block. In their Uniswap V2 audit report, Currin, Terry, Erfurt,
Livnev, Manacorda, and Lundfall (2020) highlight the following attack vectors by which
miners can extract value from the protocol:

• Order sequencing: A miner wants to sell Token X at an advantageous price and
orders all buy transaction to appear before their own sell transaction to drive up
the price prior to the sale and places other sell transactions after theirs.

• Sandwich attack: A miner observes that Alice wants to buy a large quantity of
Token X, inserts their own purchase driving up the price before recording Alice’s
original trade, which drives up the price even further, then immediately puts in a
sell order at this higher price to profit from this a pump-and-dump scheme.

• Liquidity sandwich attack: A miner observes large trade from Alice which they
front-run with massive liquidity provision, giving them majority stake in the LP
pool when Alice’s order executes, thus securing the lion’s share of LP rewards. In
the same block, the miner withdraws liquidity immediately after the trade for a
riskless profit. This can be implemented using a flash loan.

Until the beginning of 2021, technically sophisticated bot networks and miners used
to front-run DeFi trades, liquidations, and withdrawal of AMM liquidity due to extreme
price moves. They furthermore engaged in arbitrage and monetized short-term information
advantages. The comprehensive adoption of Flashbots’ modified mining software in 2021
has shifted these activities onto miners themselves, who are able to exploit privilege to
determine transaction order in blocks they produce. Figure 1 illustrates that Flashbots
platform, by their own account, has facilitated toxic trading activities on the order of
$547M from January through August 2021. This number represents a lower bound since it
only includes activities known to Flashbots on selected subset protocols in the DeFi space.

In analogy to the effect of high-frequency trading (HFT) in traditional markets, this has
led to a socially wasteful technological arms race among algorithmic traders that degrades
UX and impedes the realization of DeFi’s promise and potential.

3. The Protocol

3.1. Technical Challenges. In Krypton, equilibrium prices can change whenever an order
has been completely executed, an order that is currently being executed is modified or
canceled, or a new order is placed that trades in equilibrium. Computing the equilibrium
entails running the matching engine algorithm, which is so computationally intensive by
smart contract standards that it exceeds the block gas limit on Ethereum with more than
about 200 orders on each side. Furthermore, transferring tokens every time the equilibrium
price changes is inefficient. To reduce the number of on-chain transactions, Krypton collects
aggregate token transfers over periods of time during which a number of different market
clearing prices may have prevailed and accurately executes those in regular intervals. The
technical approach is presented in the remainder of this section.
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Figure 1. Cumulative Historical Miner Extracted Value (MEV). Source:
https://explore.Flashbots.net, retrieved on September 29, 2021

3.2. A Decentralized, Trustless, On-Chain/Off-Chain Approach. Krypton moves
the computationally most intensive parts to a decentralized network of Chainlink oracles
via an external adapter. The storage footprint is minimized by only keeping structures
of existing and completed orders as well as requests to make, change, or cancel orders
on-chain. The computational demand is minimized by solely executing trade settlement
on-chain.

Trade execution is run in regular intervals covering the preceding period, consisting of
blocks [n, n + h]. ”h” could be a minute, an hour, or an entire day for instance. During
trade execution, the matching engine is run sequentially and the number of tokens to be
transferred for periods between price changes is computed and summed up. Only aggregate
transfers are reported back to the smart contract and implemented on-chain. The front-end
keeps users up to date regarding the state of the system, anticipating pending changes yet
to be memorialized on-chain.

Figure 2 illustrates the relationships between the protocol’s participants.
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Figure 2. Schematic Illustration of Krypton’s Protocol Architecture

4. Conclusion

Krypton solves information-theoretic inefficiencies in AMMs, central limit order books,
and centralized crypto exchanges, as well as traditional exchanges like NYSE or CME.
These trading venues are plagued by front-running and monetization of short-term infor-
mation advantages. These toxic activities prevent the implementation of efficient dynamic
trading strategies which result in suboptimal exposure to systematic risk factors as well as
unnecessary exposure to idiosyncratic risk.

In decentralized blockchain ecosystems, miners are the final arbiter of transaction se-
quencing. Their collusion facilitated through Flashbots allows algorithmic traders to imple-
ment toxic trading strategies to exploit microstructural characteristics of existing market
and protocol mechanisms for the maximum extractable value (MEV) free of unpredictabil-
ity or risk of interference.

Krypton’s approach renders algorithmic trading tools blunt and miners’ block sequencing
rights worthless. Toxic traders have no way to win on Krypton and will go elsewhere. This
will make trading inexpensive and enable of trading strategies that implement an optimal
(dynamic) risk-return tradeoff.
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