

Final Material Verification Report

This Final Report provides nondestructive results using the Hardness, Strength, & Ductility (HSD) process that is performed in compliance with Title 49 CFR §192.607

FINAL PROJECT SUMMARY

Operator: Energy Company	NDE Services: MMT	MMT Project ID: MMT22000		
Testing Dates: April 12 th , 2022	No. of Test Sites: 1	No. of Samples: 1		

FINAL SAMPLE OVERVIEW

Sample ID	Sample Type	Dig ID	Line ID	Approximate Street Address	GPS Coordinates	
Sample A	In-Service Pipe Joint	Dig 1	Line AB	123 Pipe St, Pipe Town, MA 01760	12.345678, -87.654321	

FINAL MATERIAL VERIFICATION RESULTS SUMMARY

Comple ID	Physical Properties			Measured NDE Strength		Conservative NDE Strength		API 5L Tensile Grade				
Sample ID	OD WT		Soom Typo	Yield	UTS	UTS Yield UTS E		Expected	Conservat	ive Grade	Expected Requ	irement Check
	(inch)	(inch)	Sealli Type	(ksi) (ksi)	(ksi)	(ksi) Gr	Grade	Yield	UTS	Yield	UTS	
Sample A	16	0.250	LF-ERW	57.5	74.4	54.5	71.5	X46	X52	X56	Verified	Verified

Nondestructive evaluation (NDE) strength properties are reported as the average measured yield and UTS, as well as the conservative properties calculated by reducing the measured values by the HSD measurement uncertainty at an 80% confidence level for final strength models which is 3.0 ksi for yield and 2.9 ksi for UTS. A conservative API 5L tensile grade is determined by comparing the conservative strength to the minimum requirements for PSL 1 materials, with the sample conforming to all grades up to what is reported. If an expected grade is provided, the strength requirements are checked with the measured values and uncertainty. An expected grade of "N/A" indicates that this information was not available when the report was issued. Additional information and remarks are provided under the detailed results and justification.

Prepared by:

John Smith

John Smith

Reviewed by: J

Jane Johnson

Jane Johsnon

Issued: April 26, 2022

MMT Project ID: MMT22000

Final Report Summary Page 1 of 3

FINAL DETAILED RESULTS AND JUSTIFICATION

Sample geometry: The outer diameter (OD) and wall thickness (WT) are nominal values provided by the operator and verified during field examination.

Seam type determination: Sample A was an electric resistance welded (ERW) seam that was classified as low frequency (LF). Refer to the attached summary of test procedures, and welded seam reports for additional details on seam type designations.

Measured NDE strength properties: Measured strength properties are reported as the average 0.5% total elongation under load (EUL) yield and ultimate tensile strength (UTS) based on subset values from multiple HSD test on the same sample. Additional data on 0.2% offset yield strength is provided in the attached base metal test reports.

Conservative NDE strength properties: Procedural requirements in §192.607(d)(2) specifies that nondestructive methods for grade verification must conservatively account for measurement inaccuracy and uncertainty. The HSD process for final strength estimates considers HSD base metal tests, microstructure grain size, chemical composition, and sample manufacturing process with an associated measurement uncertainty at varying confidence levels shown in the table below¹, with MMT recommending an 80% confidence level². These measurement uncertainties are subtracted from the measured values to establish conservative lower bound strength properties.

Confidence Level (%)	Yield Uncertainty (ksi)	UTS Uncertainty (ksi)		
70	1.9	1.8		
80	3.0	2.9		
90	4.6	4.4		
95	5.9	5.6		

API 5L tensile grade: A conservative grade is determined by comparing the conservative strength properties at the specified confidence level to the tensile requirements for API 5L PSL 1 materials for yield and UTS, which are both referenced in 192.607(b)(2). The API 5L grade requirements are minimum values, so the sample conforms to all grades up to what is reported. If an expected grade is provided, the measured strength and measurement uncertainty are compared to the grade requirement to assess conformance using the criterion in the table below. Note that these criteria are based on the NDE strength results and measurement uncertainty at the desired confidence level and may require further analysis and review to substantiate the outcome.

Expected Grade Requirement Check	Criterion	Description			
Verified	Measured - Uncertainty ≥ API 5L Grade Minimum	Measured strength exceeds the expected grade requirement at specified confidence level.			
Not Verified	Measured + Uncertainty ≤ API 5L Grade Minimum	Measured strength is more conservative than expected grade at specified confidence level			
Inconclusive	Measured - Uncertainty < API 5L Grade Minimum	Measured strength is within the uncertainty of the grade requirement at the specified confidence level			
Inconclusive	Measured + Uncertainty > API 5L Grade Minimum				

¹ Tabulated HSD measurement uncertainty is applicable to final model results reported as of July 28, 2019.

² Palkovic et al., A statistical approach to material verification of expected grade through opportunistic measurements, PPIM, 2020.

FINAL UT WALL THICKNESS RESULTS

Ultrasonic Testing (UT) wall thickness measurements: Informational ultrasonic thickness measurements that were taken to evaluate average material removal during surface preparation and the wall thickness around the circumference of the pipe body are provided below.

Sample ID	Nominal wall	Average initial	Average wall	Percent change	Percent change
	thickness	wall thickness	after testing	in initial wall	in nominal wall
	(inch) ^[1]	(inch)	(inch)	thickness (%) ^[2]	thickness (%) ^[3]
Sample A	0.250	0.263	0.245	-6.8	-2.0

[1] As identified by Energy Company

[2] Change in initial wall thickness = (Average wall thickness after testing-Average initial wall thickness) / Average initial wall thickness[3] Change in nominal wall thickness = (Average wall thickness after testing-Nominal wall thickness) / Nominal wall thickness

Sample ID		Average UT circumferential wall thickness measurements (inch)										
Sample ID	1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00								11:00	12:00		
Sample A	0.260	0.263	0.264	0.264	0.264	0.262	0.262	0.258	0.263	0.260	0.260	0.263

Additional details of the results, procedures, sample test images, individual HSD tests, microstructure grain size, chemical composition, and service limitations are attached to this report.

Massachusetts Materials Technologies LLC 8 Erie Dr, Unit A Natick, MA 01760 617-502-5636 www.ByMMT.com

Summary of Test Procedures

Last updated: Dec 9, 2020

For each sample, the following nondestructive evaluation (NDE) scope of work is completed in accordance with MMT standard test procedures¹.

- **Identifying test locations**: An initial examination is conducted with visual observations, ultrasonic testing (UT), and magnetic particle inspection to identify suitable test locations.
- Verification of material grade (e.g. yield and ultimate tensile strength): Tensile strength properties are predicted using HSD surface measurements from base metal tests, metallographic grain size, and chemical composition. These predictions are based on MMT's database of over 150 pipe joints with vintages ranging from 1920 to 2016, grades A to X70, and manufacturing processes that include seamless and seam-welded construction. Strength estimates of lap welded joints assume no variation through the pipe wall as a result of a full-body normalization during manufacturing. The HSD process has been validated by subject matter experts through a prior PRCI testing program². For each sample, at least five HSD measurements of material properties are obtained in at least two circumferential quadrants for a minimum of ten measurements. The HSD unit is properly calibrated prior to testing.
- **Metallographic grain size**: Average grain size is measured using the mean-linear-intercept (mli) method from ASTM E112 with surface microscopy of the etched microstructure.
- Chemical composition: Chemical composition is measured through independent laboratory testing of burrs removed from the pipe surface. Combustion analysis is used to measure carbon and sulfur content and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) is used for all other elements. ICP-OES can accurately detect between 0.01 and 95 weight percent for all elements except boron which has a detection limit of 0.0005 weight percent, and measurements are calibrated with a NIST 125B reference material³.
- Welded seam: If applicable, seam types are determined from observations of weld reinforcement, visual examination of the etched weld region, and hardness data measured from HSD tests across the longitudinal seam. Pipe joints are classified as flash, submerged arc welded (SAW), lap-welded, low frequency ERW (LF), high frequency ERW with no post-weld-heat-treatment (HF no PWHT), or high frequency ERW with a PWHT (HF PWHT), based on comparisons with the MMT database that includes over 75 seam-welded pipe joints. Some ERW seams are designated as PWHT ERW if the weld does not exhibit characteristics that allow for a conclusive determination of whether a HF or LF welding process was used, such as an inner heat-affected-zone (HAZ) associated with the narrow HF bondline HAZ or chemistry that is consistent with killed steel. Ongoing development efforts will allow for further differentiation of LF and HF PWHT ERW seams.

¹ Complete MMT field procedures will be provided upon request.

² Amend et al., Material Verification – Validation of in situ methods for material property determination, PRCI NDE-4-8, 2018.

³ Email correspondence with chemical testing laboratory.

HSD Process & Service Limitations

Last updated: Aug 21, 2020

The HSD process includes proprietary instrumentation, a set of established field procedures, field technician training and certification, nondestructive data collection, and associated data review and data analytics. The results provided for this project were obtained by MMT and/or technicians that were trained and certified by MMT, using the Hardness, Strength and Ductility (HSD) process.

According to Pipeline Research Council International (PRCI) report Catalog No. PR-335-173816¹, the HSD process is *"the best performing technique"* based on third party blind testing of 50 pipe samples of different geometry, manufacturing process, and vintage. Significant improvements have been made to reduce the HSD process measurement uncertainty by more than doubling the reference dataset of pipeline materials used to develop machine learning models that relate nondestructive measurements to conventional laboratory test results. Those improvements are used to generate the measurement uncertainty reported in the detailed results and justification.

Title 49 Code of Federal Regulations (CFR) §192.607 requires that procedures for material verification with nondestructive methods use techniques that have been validated by a subject matter expert based on comparisons with destructive test results, conservatively account for measurement inaccuracy and uncertainty using reliable engineering tests and analyses, and use equipment that has been properly calibrated². Therefore, the HSD process and reported results are not a direct substitute for a laboratory tensile test.

All techniques that rely on multiple steps and data entries, including work performed in the field by technicians without onsite supervision, are subject to risk and potential human error. MMT provides systems to reduce the risk of delivering incorrect results while the possibility of outliers is known and considered in part through the unity charts used to establish the HSD process measurement uncertainty.

Nevertheless, neither MMT nor its field service contractors:

- provide warranties or guarantees on test results, express or implied, including without limitation implied warranties of merchantability and fitness for a particular purpose
- can be held liable for pipeline deficiencies or failures, or damages arising from pipeline deficiencies or failures.

This report sets out our professional opinion, but not a guarantee or a warranty. The testing is intended to add to your knowledge of the pipeline characteristics and help you to understand the risk of owning and/or operating the pipeline. The testing is not intended to and cannot eliminate the risk of ownership. We help you assess these risks; we do not assume them for you.

¹ Amend et al., Material Verification – Validation of in situ methods for material property determination, PRCI NDE-4-8, 2018. ² PHMSA, "Pipeline Safety: Safety of Gas Transmission Pipelines: MAOP Reconfirmation, Expansion of Assessment Requirements, and Related Amendments. Federal Register, Vol. 84, No. 190, 2019.

Figure 1: Sample A, site and dig overview

Figure 2: Sample A, first test quadrant and info shown

Figure 3: Sample A, second test quadrant and info shown

Figure 4: Sample A, examination of etched heat-affected-zone (HAZ) on the outer surface of the ERW seam. The boundaries of the etched outer HAZ are marked with the dashed red lines, the bondline is shown by the dashed yellow line, and the contact marks are marked with the blue lines. The etched HAZ width is approximately 0.24 inches.

Figure 5: Sample A, HSD test performed across the longitudinal seam. The bondline is located approximately 0.7 inch from the start of the HSD test.

Natick, MA 01760 617-502-5636

WWW.ByMMT.com

Material Verification - Base Metal Test Report

Chemical Composition and Grain Size [1]

	Base Metal Chemical Composition (wt. %) [2]									Grain Size [3]					
-	С	Mn	Р	S	Cr	Nb	Cu	AI	Мо	Ni	Si	Ti	v	В	mli (μm)
	0.24	0.78	0.008	0.022	0.03	< 0.01	0.02	0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.0005	14.0

Carbon Equivalent (wt. %)

$$\begin{array}{c} \mathsf{CE}_{\mathsf{PCM}} & \underline{\mathsf{0.29}} & \mathsf{CE}_{\mathsf{PCM}} = \mathsf{C} + \frac{\mathsf{Si}}{\mathsf{30}} + \frac{\mathsf{Mn} + \mathsf{Cu} + \mathsf{Cr}}{\mathsf{20}} + \frac{\mathsf{Ni}}{\mathsf{60}} + \frac{\mathsf{Mo}}{\mathsf{15}} + \frac{\mathsf{V}}{\mathsf{10}} + \mathsf{5B} \\ \\ \mathsf{CE}_{\mathsf{IIW}} & \underline{\mathsf{0.38}} & \mathsf{CE}_{\mathsf{IIW}} = \mathsf{C} + \frac{\mathsf{Mn}}{\mathsf{6}} + \frac{\mathsf{Cr} + \mathsf{Mo} + \mathsf{V}}{\mathsf{5}} + \frac{\mathsf{Ni} + \mathsf{Cu}}{\mathsf{15}} \end{array}$$

Chemical composition and grain size are reported as one set per sample. Results are incorporated into final prediction for individual HSD tests.
Base metal chemical composition is measured through laboratory testing of burrs removed from the pipe surface in accordance with MMTF005.
Grain size is measured using the mean-linear-intercept (mli) method through image processing of surface microscopy in accordance with MMTF003.

Material Strength Testing [4]

Prepared:

Jane Johnson Approved:

Jane Johnson

8 Erie Dr, Unit A Natick, MA 01760 617-502-5636

WWW.ByMMT.com

Material Verification - Base Metal Test Report

Natick, MA 01760 617-502-5636

WWW.ByMMT.com

Material Verification - Base Metal Test Report

Massachusetts Materials Technologies LLC 8 Erie Dr, Unit A Natick, MA 01760 617-502-5636

WWW.ByMMT.com

Material Verification - Welded Seam Report

Testing Inf	formati	ion								
С	ustomer	Energy (Company		Job ID MMT22	000		Report No.	220412103449	REV
Site	Location	123 Pipe	e St					Test Date	4/12/2022	
		Pipe Tov	vn, MA 01760					Test Time	10:34	
GPS Coo	ordinates	12.3456	78, -87.654321		Dig ID Dig 1		Tec	hnician Initials	JN & DV	
Sa	ample ID	Sample	A		Pipe Size 16 OD x	0.250 WT (in)				
Te	st Name	Sample	A-Q1_WD-01_8000	-EB8000_22041210)3449					
Sample Des	scription	In-Servio	ce Pipe Joint - Reco	rds indicate that the	e year of manufactu	ring is 1961.		HSD Serial No.	8000-EB8000	_
		The expe	ected API 5L grade	is X46.			Calibra	ation Standard	21-AB-10	
Testing	Location	40-46" a	way from the upst	ream edge of coatir	ng at clock position (01:00-03:00.	Cali	bration Status	PASS	_
Measurem	ents									
	Post-Pr	rocessing	Version: 2.2							
	1 OSt 11	occosing	2.2							
	HSD Ha	rdness = (Stylus force)/(Con	tact area) with unit	s of pressure	550		Welded Sea	m	
	Base	Metal	Weld Zone	Weld	ΔHs Average			Welded Sea		
	Avera	ge (KSI)	Average (KSI)	Bondline (KSI)	(%)	500			•	
Stylus-1	3	14	379	457	20.6	(is) 450				
Stylus-2	3	19	406	490	27.4	ss 400		• *		
Stylus-3	3	10	376	454	21.3	ardn		and the second		
Chulus d		00	227	220		Ϋ 350 Ω	ANTERNAL ANTERNAL	and a state of the		
Stylus-4	2	92	327	339	11.7	£ ³⁰⁰		· · · · · · · · · · · · · · · · · · ·		
Weld Bo	ondline: H	ardness a	t the bondline for	seam toughness det	termination is	250				
evaluate	ed over a (0.10 inch	length of the HSD v	veld test, centered	on the bondline.	200		Bondli	ine	
ΔHs Ave	rage: (Ba	se Metal A	Average - Weld Zor	ie Average) / Base N	Metal Average	0	0.5	1	1.5	
							Gi	roove Length (inches))	
						-	Stylus-1 🔸	Stylus-2 🔺 Stylu	us-3 🔶 Stylus-4	
Regulte										
Results	Macro	etch Weld	d Width: 0	.24 inches	S Normaliz	ed Macroetch We	eld Width:	96	% of pipe wall th	ickness
					Seam Type Determ	ination				
			6. h		,,			· · · · · · · · · · · · · · · · · · ·		
			Submerged Arc V	/elded (SAW)		X	ERW [class	ified seam type or	probability below]	
			Flash			98	Low Freque	ency ERW (LF-ERW	/)	
			Lap-Welded			0	High Freque	ency no PWHT ER	W (HF no PWHT-ERW	/)
			See Comments			2	High Frequ	ency PWHT ERW (HF PWHT-ERW)	
		·					am classificati	on determined with	th a classification mo	del
CI	assificatio	on Model	Version: v2	00406-cBayes		trained	to a database	of over 75 ERW p	ipes.	
Seam type do	terminat	ion is had	ed on the comparie	on of sample mean	urements to a data	hase of FRW same	oles that were	verified through a	laboratory examinat	ion of the
etched wold	rrnss-sort	ion Unkr	nown samnles are a	issumed to evhibit	haracteristics that	are similar to the	known samnla	s in this FRW/ data	set The seam type	
determination	n is suhie	ct to the o	quality of the image	es and data collecte	d. as well as the int	erpretation by the	e MMT renorti	ng groun.	set. The search type	
Comments	5									
	\square	l C	. Al			laho	Johnson.			
Duamanada	- fi	mn Fr	John Sn	nith	Δn	proved:		Jane Johns	on	
Prepareo:	~ ~ ~				, (þ					

Grain Structure Report

Testing Informa	tion				
Customer Test Location GPS Coordinates	Energy Company 123 Pipe St Pipe Town, MA 01760 12.345678, -87.654321	Job ID Dig ID	MMT22000	Test Date Operator Initials Surface Finish Etchant	4/12/2022 JN & DV 1μm Diamond Paste 2% Nital
Sample ID	Sample A	Pipe Size	16 OD x 0.250 WT (in)	-	
Measurements					
Magnification	500X				
Comments					
Average mean-line	ar-intercept grain size measured fro	om 5 diffe	rent images of the etch	ned steel microstructur	e is 14.0 ± 0.3 μm.
Prepared:	hn Smith John Smith		Jake Joh Approved:	Jane Jo	hnson