

Comprehensive Stool Analysis

BACTERIOLOGY CULTURE				
Expected/Beneficial flora	Commensal (Imbalanced) flora	Dysbiotic flora		
3+ Bacteroides fragilis group	1+ Enterobacter cloacae complex			
3+ Bifidobacterium spp.	1+ Klebsiella oxytoca			
3+ Escherichia coli	4+ Streptococcus anginosus			
1+ Lactobacillus spp.	4+ Streptococcus constellatus			
2+ Enterococcus spp.				
4+ Clostridium spp.				
		MALDI-TOF		
NG = No Growth				

BACTERIA INFORMATION

Expected / Beneficial bacteria make up a significant portion of the total microflora in a healthy & balanced GI tract. These beneficial bacteria have many health-protecting effects in the GI tract including manufacturing vitamins, fermenting fibers, digesting proteins and carbohydrates, and propagating anti-tumor and anti-inflammatory factors.

Clostridia are prevalent flora in a healthy intestine. Clostridium spp. should be considered in the context of balance with other expected/beneficial flora. Absence of clostridia or over abundance relative to other expected/beneficial flora indicates bacterial imbalance. If C. difficile associated disease is suspected, review the Clostridium difficile toxin A/B results from the GI Pathogens PCR section of this report.

Commensal (Imbalanced) bacteria are usually neither pathogenic nor beneficial to the host GI tract. Imbalances can occur when there are insufficient levels of beneficial bacteria and increased levels of commensal bacteria. Certain commensal bacteria are reported as dysbiotic at higher levels.

Dysbiotic bacteria consist of known pathogenic bacteria and those that have the potential to cause disease in the GI tract. They can be present due to a number of factors including: consumption of contaminated water or food, exposure to chemicals that are toxic to beneficial bacteria; the use of antibiotics, oral contraceptives or other medications; poor fiber intake and high stress levels. Aeromonas, Plesiomonas, Salmonella, Shigella, Vibrio, Yersinia, & Edwardsiella tarda have been specifically tested for and found absent unless reported.

YEAST CULTURE

Normal flora

Dysbiotic flora

1+ Geotrichum spp.

2+ Candida guilliermondii

1+ Rhodotorula mucilaginosa

YEAST INFORMATION

Yeast may normally be present in small quantities in the skin, mouth, and GI tract as a component of the resident microbiota. Their presence is generally benign. Recent studies, however, show that high levels of yeast colonization is associated with several inflammatory diseases of the GI tract. Animal models suggest that yeast colonization delays healing of inflammatory lesions and that inflammation promotes colonization. These effects may create a cycle in which low-level inflammation promotes fungal colonization and this colonization promotes further inflammation. Consideration of clinical intervention for yeast should be made in the context of other findings and presentation of symptoms.

SPECIMEN DATA

Comments:

Date Collected: 10/19/2022 Date Received: 10/21/2022 Date Reported: 10/31/2022

Methodology: Culture and identification by MALDI-TOF and conventional biochemicals

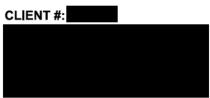
ORDER: PATIENT: Jennifer Burghart

ID: SEX: Female AGE: DOB:

Gl Pathogens; Multiplex PCR

Viruses	Result	Reference Interval
Adenovirus F40/41	Negative	Negative
Norovirus GI/GII	Negative	Negative
Rotavirus A	Negative	Negative
Pathogenic Bacteria	Result	Reference Interval
Campylobacter (C. jejuni, C. coli and C. lari)	Negative	Negative
Clostridioides difficile (Toxin A/B)	Negative	Negative
Escherichia coli O157	Negative	Negative
Enterotoxigenic Escherichia coli (ETEC) It/st	Negative	Negative
Salmonella spp.	Negative	Negative
Shiga-like toxin-producing Escherichia coli (STEC) stx1/stx2	Negative	Negative
Shigella (S. boydii, S. sonnei, S. flexneri & S. dysenteriae)	Negative	Negative
Vibrio cholerae	Negative	Negative

SPECIMEN DATA


Comments:

Date Collected: 10/19/2022 Date Received: 10/21/2022 Date Reported: 10/31/2022 Methodology: Multiplex PCR

ORDER: PATIENT: Jennifer Burghart

ID: SEX: Female
AGE: DOB:

Stool Chemistries

Soft

Digestion / Absorption	Result	Unit	Reference Interval
Elastase	350	μg/g	>200
Fat Stain	Not Detected		None – Moderate
Carbohydrates [†]	Negative		Negative
Inflammation	Result	Unit	Reference Interval
Lactoferrin	2.0	μg/mL	<7.3
Calprotectin	<10	μg/g	< 80
Lysozyme*	254	ng/mL	≤500
I mmuno l ogy	Result	Unit	Reference Interval
Secretory IgA*	220	mg/dL	30-275
Short Chain Fatty Acids	Result	Unit	Reference Interval
% Acetate [‡]	60	%	50-72
% Propionate [‡]	21	%	11-25
% Butyrate [‡]	16	%	11-32
% Valerate [‡]	2.2	%	0.8-5.0
Butyrate [‡]	1.4	mg/mL	0.8-4.0
Total SCFA's‡	8.4	mg/mL	5.0-16.0
Intestinal Health Markers	Result	Unit	Reference Interval
рН	6.6		5.8-7.0
Occult Blood	Negative		Negative
Macroscopic Appearance	Result	Unit	Reference Interval
Color	Brown		Brown

Chemistry Information

Consistency

Elastase findings can be used for assessing pancreatic exocrine function and insufficiency.

Soft

Fat Stain: Microscopic determination of fecal fat using Sudan IV staining is a qualitative procedure utilized to assess fat absorption and to detect steatorrhea.

SPECIMEN DATA

Comments:

Date Collected: 10/19/2022 Date Received: 10/21/2022 Date Reported: 10/31/2022

Methodology: Turbidimetric immunoassay, Microscopy, Colormetric, Elisa, Gas Chromotography, ph Electrode, Guaiac,

Macroscopic Observation

RI= Reference Interval, Toggles: Green = within RI, Yellow = moderately outside RI, Red = outside RI

*This test was developed and its performance characteristics determined by Doctor's Data Laboratories in a manner consistent with CLIA requirements. The U. S. Food and Drug Administration (FDA) has not approved or cleared this test; however, FDA clearance is not currently required for clinical use. The results are not intended to be used as a sole means for clinical diagnosis or patient management decisions.

†This test has been modified from the manufacturer's instructions and its performance characteristics determined by Doctor's Data Laboratories in a manner consistent with CLIA requirements.

[‡]This test was developed and its performance characteristics determined by Doctor's Data Laboratories in a manner consistent with CLIA requirements. The U.S. Food and Drug Administration (FDA) has not approved or cleared this test; however, FDA clearance is not currently required for clinical use.

ORDER: PATIENT: Jennifer Burghart

SEX: Female AGE:

DOB:

Stool Chemistries

Carbohydrates: The presence of reducing substances in stool specimens can indicate carbohydrate malabsorption.

Lactoferrin and Calprotectin are reliable markers for differentiating organic inflammation (IBD) from function symptoms (IBS) and for management of IBD. Monitoring levels of fecal lactoferrin and calprotectin can play an essential role in determining the effectiveness of therapy, are good predictors of IBD remission, and can indicate a low risk of relapse.

Lysozyme is an enzyme secreted at the site of inflammation in the GI tract and elevated levels have been identified in IBD patients.

Secretory IgA (sIgA) is secreted by mucosal tissue and represents the first line of defense of the GI mucosa and is central to the normal function of the GI tract as an immune barrier. Elevated levels of sIgA have been associated with an upregulated immune response.

Short chain fatty acids (SCFAs): SCFAs are the end product of the bacterial fermentation process of dietary fiber by beneficial flora in the gut and play an important role in the health of the GI as well as protecting against intestinal dysbiosis. Lactobacilli and bifidobacteria produce large amounts of short chain fatty acids, which decrease the pH of the intestines and therefore make the environment unsuitable for pathogens, including bacteria and yeast. Studies have shown that SCFAs have numerous implications in maintaining gut physiology. SCFAs decrease inflammation, stimulate healing, and contribute to normal cell metabolism and differentiation. Levels of Butyrate and Total SCFA in mg/mL are important for assessing overall SCFA production, and are reflective of beneficial flora levels and/or adequate fiber intake.

Color: Stool is normally brown because of pigments formed by bacteria acting on bile introduced into the digestive system from the liver. While certain conditions can cause changes in stool color, many changes are harmless and are caused by pigments in foods or dietary supplements.

Consistency: Stool normally contains about 75% water and ideally should be formed and soft. Stool consistency can vary based upon transit time and water absorption.

SPECIMEN DATA

Comments:

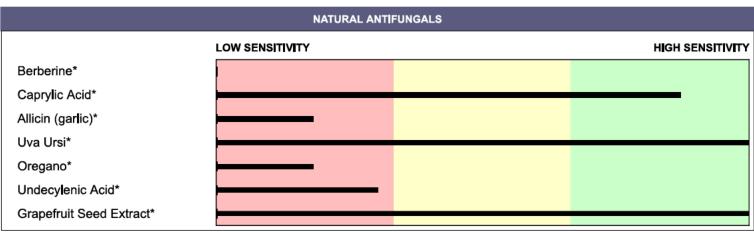
Date Collected: 10/19/2022 Date Received: 10/21/2022 Date Reported: 10/31/2022 Methodology:

ORDER:

DOB:

PATIENT: Jennifer Burghart

ID: SEX: Female



Yeast Susceptibilities

Candida guilliermondii

NON-ABSORBED ANTIFUNGALS		
LOW SENSITIVITY		HIGH SENSITIVITY
Nystatin		

AZOLE ANTIFUNGALS			
	RESISTANT	S-DD	SUSCEPTIBLE
Fluconazole			1
Itraconazole		✓	
Ketoconazole			✓
Standardized test interpretive categories established for Candida spp. are used for all yeast isolates.			

Natural antifungal agents may be useful for treatment of patients when organisms display in-vitro susceptibility to these agents. The test is performed by using standardized techniques and filter paper disks impregnated with the listed agent. Relative activity is reported for each natural agent based upon the diameter of the zone of inhibition or no growth zone surrounding the disk. Data based on over 5000 individual observations were used to relate the zone size to the activity level of the agent. A scale of relative activity is defined for the natural agents tested.

Susceptible results imply that an infection due to the bacteria may be appropriately treated when the recommended dosage of the tested antimicrobial agent is used. Intermediate results imply that response rates may be lower than for susceptible bacteria when the tested antimicrobial agent is used. Resistant results imply that the bacteria will not be inhibited by normal dosage levels of the tested antimicrobial agent.

Non-absorbed antifungals may be useful for treatment of patients when organisms display in-vitro susceptibility to these agents. The test is performed using standardized commercially prepared disks impregnated with Nystatin. Relative activity is reported based upon the diameter of the zone of inhibition or no growth zone surrounding the disk.

Susceptible results imply that an infection due to the fungus may be appropriately treated when the recommended dosage of the tested antifungal agent is used. Susceptible - Dose Dependent (S-DD) results imply that an infection due to the fungus may be treated when the highest recommended dosage of the tested antifungal agent is used. Resistant results imply that the fungus will not be inhibited by normal dosage levels of the tested antifungal agent.

SPECIMEN DATA

Comments:

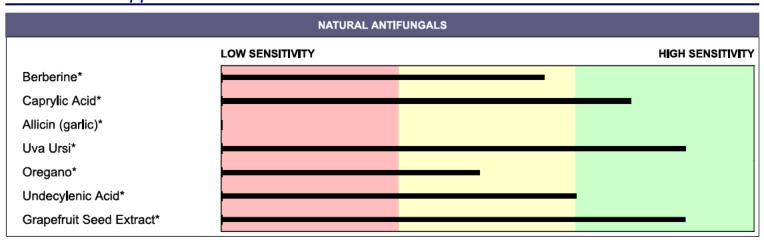
Date Collected: 10/19/2022 Date Received: 10/21/2022 Date Reported: 10/31/2022 Methodology: Disk Diffusion

^{*}This test was developed and its performance characteristics determined by Doctor's Data Laboratories in a manner consistent with CLIA requirements. The U. S. Food and Drug Administration (FDA) has not approved or cleared this test; however, FDA clearance is not currently required for clinical use. The results are not intended to be used as a sole means for clinical diagnosis or patient management decisions.

ORDER: PATIENT: Jennifer Burghart

ID: SEX: Female AGE:

DOB:


CLIENT#:



Yeast Susceptibilities

Geotrichum spp.

Natural antifungal agents may be useful for treatment of patients when organisms display in-vitro susceptibility to these agents. The test is performed by using standardized techniques and filter paper disks impregnated with the listed agent. Relative activity is reported for each natural agent based upon the diameter of the zone of inhibition or no growth zone surrounding the disk. Data based on over 5000 individual observations were used to relate the zone size to the activity level of the agent. A scale of relative activity is defined for the natural agents tested.

Susceptible results imply that an infection due to the bacteria may be appropriately treated when the recommended dosage of the tested antimicrobial agent is used. Intermediate results imply that response rates may be lower than for susceptible bacteria when the tested antimicrobial agent is used. Resistant results imply that the bacteria will not be inhibited by normal dosage levels of the tested antimicrobial agent.

Non-absorbed antifungals may be useful for treatment of patients when organisms display in-vitro susceptibility to these agents. The test is performed using standardized commercially prepared disks impregnated with Nystatin. Relative activity is reported based upon the diameter of the zone of inhibition or no growth zone surrounding the disk.

Susceptible results imply that an infection due to the fungus may be appropriately treated when the recommended dosage of the tested antifungal agent is used. Susceptible - Dose Dependent (S-DD) results imply that an infection due to the fungus may be treated when the highest recommended dosage of the tested antifungal agent is used. Resistant results imply that the fungus will not be inhibited by normal dosage levels of the tested antifungal agent.

SPECIMEN DATA

Comments:

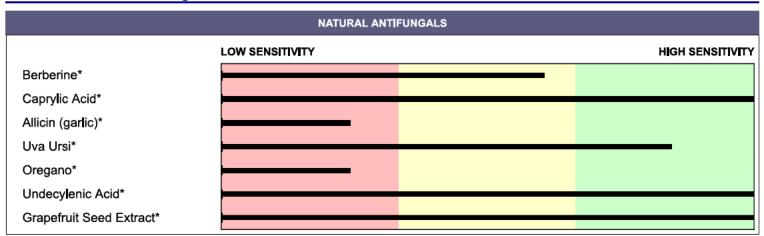
Date Collected: 10/19/2022 Date Received: 10/21/2022 Date Reported: 10/31/2022 Methodology: Disk Diffusion

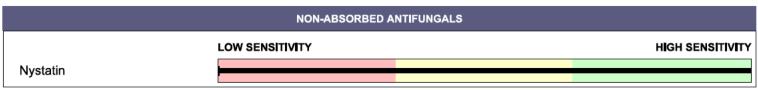
ORDER:

PATIENT: Jennifer Burghart

ID: SEX: Female

AGE: DOB:





Yeast Susceptibilities

Rhodotorula mucilaginosa

Natural antifungal agents may be useful for treatment of patients when organisms display in-vitro susceptibility to these agents. The test is performed by using standardized techniques and filter paper disks impregnated with the listed agent. Relative activity is reported for each natural agent based upon the diameter of the zone of inhibition or no growth zone surrounding the disk. Data based on over 5000 individual observations were used to relate the zone size to the activity level of the agent. A scale of relative activity is defined for the natural agents tested.

Susceptible results imply that an infection due to the bacteria may be appropriately treated when the recommended dosage of the tested antimicrobial agent is used. Intermediate results imply that response rates may be lower than for susceptible bacteria when the tested antimicrobial agent is used. Resistant results imply that the bacteria will not be inhibited by normal dosage levels of the tested antimicrobial agent.

Non-absorbed antifungals may be useful for treatment of patients when organisms display in-vitro susceptibility to these agents. The test is performed using standardized commercially prepared disks impregnated with Nystatin. Relative activity is reported based upon the diameter of the zone of inhibition or no growth zone surrounding the disk.

Susceptible results imply that an infection due to the fungus may be appropriately treated when the recommended dosage of the tested antifungal agent is used. Susceptible - Dose Dependent (S-DD) results imply that an infection due to the fungus may be treated when the highest recommended dosage of the tested antifungal agent is used. Resistant results imply that the fungus will not be inhibited by normal dosage levels of the tested antifungal agent.

SPECIMEN DATA

Comments:

Date Collected: 10/19/2022 Date Received: 10/21/2022 Date Reported: 10/31/2022 Methodology: Disk Diffusion

*This test was developed and its performance characteristics determined by Doctor's Data Laboratories in a manner consistent with CLIA requirements. The U. S. Food and Drug Administration (FDA) has not approved or cleared this test; however, FDA clearance is not currently required for clinical use. The results are not intended to be used as a sole means for clinical diagnosis or patient management decisions.

Order: Patient: Jennifer Burghart

Page: **8 of 9** Client #:

Introduction

This analysis of the stool specimen provides fundamental information about the overall gastrointestinal health of the patient. When abnormal microflora or significant aberrations in intestinal health markers are detected, specific commentaries are presented. If no significant abnormalities are found, commentaries are not presented.

Microbiology

Beneficial Flora

One or more of the expected or beneficial bacteria are low in this specimen. Normally abundant bacteria include Lactobacillus spp, Bifidobacteria spp, Clostridium spp, Bacteroides fragilis group, Enterococcus spp, and Escherichia coli. The beneficial flora have many health-protecting effects in the gut, and as a consequence, are crucial to the health of the whole organism. Some of the roles of the beneficial flora include digestion of proteins and carbohydrates, manufacture of vitamins and essential fatty acids, increase in the number of immune system cells, break down of bacterial toxins and the conversion of flavonoids into anti-tumor and anti-inflammatory factors. Lactobacilli, bifidobacteria, clostridia, and enterococci secrete lactic acid as well as other acids including acetate, propionate, butyrate, and valerate. This secretion causes a subsequent decrease in intestinal pH, which is crucial in preventing an enteric proliferation of microbial pathogens, including bacteria and yeast. Many GI pathogens thrive in alkaline environments. Lactobacilli also secrete the antifungal and antimicrobial agents lactocidin, lactobacillin, acidolin, and hydrogen peroxide. The beneficial flora of the GI tract have thus been found useful in the inhibition of microbial pathogens, prevention and treatment of antibiotic associated diarrhea, prevention of traveler's diarrhea, enhancement of immune function, and inhibition of the proliferation of yeast.

In a healthy balanced state of intestinal flora, the beneficial bacteria make up a significant proportion of the total microflora. Healthy levels of each of the beneficial bacteria are indicated by either a 2+, 3+ or 4+ (0 to 4 scale). However, in some individuals there is an imbalance or deficiency of beneficial flora and an overgrowth of non-beneficial (imbalance) or even pathogenic microorganisms (dysbiosis). This can be due to a number of factors including: consumption of contaminated water or food; daily exposure of chemicals that are toxic to beneficial bacteria; the use of antibiotics, oral contraceptives or other medications; poor fiber intake and high stress levels.

A number of toxic substances can be produced by the dysbiotic bacteria including amines, ammonia, hydrogen sulfide, phenols, and secondary bile acids which may cause inflammation or damage to the brush border of the intestinal lining. If left unchecked, long-term damage to the intestinal lining may result in leaky gut syndrome, fatigue, chronic headaches, and sensitivities to a variety of foods. In addition, pathogenic bacteria can cause acute symptoms such as abdominal pain, nausea, diarrhea, vomiting and fever in cases of food poisoning.

Antibacterial and antifungal susceptibility testing to a variety of prescriptive and natural agents may be provided for the pathogenic organisms that are cultured from this patient's specimen. This testing is intended to provide the practitioner with useful information to help plan an appropriate treatment regimen. A comprehensive program may be helpful in individuals in whom a dysbiotic condition has caused extensive GI damage.

Note: Not all genera or species can be tested for susceptibilities in the laboratory due to their specific growth requirements. In addition, the Centers for Disease Control and Prevention recommend not testing certain organisms such as those associated with food poisoning. If a practitioner has specific questions, please contact customer service.

Clostridium spp

Clostridia are expected inhabitants of the human intestine. Although most clostridia in the intestine are not virulent, certain species have been associated with disease. Clostridium perfringens is a major cause of food poisoning and is also one cause of antibiotic-associated diarrhea. Clostridioides difficile is a causative agent in antibiotic-associated diarrhea and pseudomembranous colitis. Other species reported to be prevalent in high amounts in patients with Autistic Spectrum Disorder include Clostridium histolyticum group, Clostridium cluster I, Clostridium bolteae, and Clostridium tetani.

Imbalanced Flora

Imbalanced flora are those bacteria that reside in the host gastrointestinal tract and neither injure nor benefit the host. Certain dysbiotic bacteria may appear under the imbalanced category if found at low levels because they are not likely pathogenic at the levels detected. Imbalanced bacteria are commonly more abundant in association with insufficiency dysbiosis, and/or a fecal pH more towards the alkaline end of the reference range (5.8 - 7.0). Treatment with antimicrobial agents is unnecessary unless bacteria appear under the dysbiotic category.

Cultured Yeast

Small amounts of yeast (+1) may be present in a healthy GI tract. However higher levels of yeast (> +1) are considered to be dysbiotic. A positive yeast culture and sensitivity to prescriptive and natural agents may help guide decisions regarding potential therapeutic intervention for yeast overgrowth. When investigating the presence of yeast, disparity may exist between culturing and microscopic examination. Yeast grows in colonies and is typically not uniformly dispersed throughout the stool. Further, some yeast may not survive transit through the intestines rendering it unviable for culturing. This may lead to undetectable or low levels of yeast identified by culture, despite a significant amount of yeast visualized microscopically. Therefore, both microscopic examination and culture are helpful in determining if abnormally high levels of yeast are present.

Order: Patient: Jennifer Burghart

Page: 9 of 9 Client #:

Microbiology continued...

Dysbiotic Yeast

Yeast was cultured from this stool specimen at a level that is considered to be dysbiotic. A positive yeast culture and sensitivity to prescriptive and natural agents may help guide decisions regarding potential therapeutic intervention for chronic yeast syndrome. When investigating the presence of yeast, disparity may exist between culturing and microscopic examination. Yeast grows in colonies and is typically not uniformly dispersed throughout the stool. This may lead to undetectable or low levels of yeast identified by culture, despite a significant amount of yeast visualized microscopically.

GI Pathogens

Introduction

The GI Pathogen profile is performed using an FDA-cleared multiplex PCR system. It should be noted that PCR testing is much more sensitive than traditional techniques and allows for the detection of extremely low numbers of pathogens. PCR testing does not differentiate between viable and non-viable pathogens and should not be repeated until 21 days after completion of treatment or resolution to prevent false positives due to lingering traces of DNA. PCR testing can detect multiple pathogens in the patient's stool but does not differentiate the causative pathogen. All decisions regarding the need for treatment should take the patient's complete clinical history and presentation into account.